Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a hemisphere with a radius of 
4.9ft, rounded to the nearest tenth of a cubic foot?
Answer: 
ft^(3)

What is the volume of a hemisphere with a radius of 4.9ft 4.9 \mathrm{ft} , rounded to the nearest tenth of a cubic foot?\newlineAnswer: ft3 \mathrm{ft}^{3}

Full solution

Q. What is the volume of a hemisphere with a radius of 4.9ft 4.9 \mathrm{ft} , rounded to the nearest tenth of a cubic foot?\newlineAnswer: ft3 \mathrm{ft}^{3}
  1. Identify formula for volume: Identify the formula for the volume of a sphere, since a hemisphere is half of a sphere.\newlineThe formula for the volume of a sphere is V=43πr3V = \frac{4}{3}\pi r^3.
  2. Calculate full sphere volume: Calculate the volume of a full sphere using the given radius of 4.9ft4.9\text{ft}. \newlineVsphere=43π(4.9)3V_{\text{sphere}} = \frac{4}{3}\pi(4.9)^3
  3. Perform calculation for sphere volume: Perform the calculation for the volume of the full sphere. Vsphere=(43)π(4.9)3=(43)π(117.649)V_{\text{sphere}} = \left(\frac{4}{3}\right)\pi(4.9)^3 = \left(\frac{4}{3}\right)\pi(117.649)
  4. Calculate numerical value: Calculate the numerical value for the volume of the full sphere. Vsphere(43)×3.14159×117.649490.875V_{\text{sphere}} \approx \left(\frac{4}{3}\right) \times 3.14159 \times 117.649 \approx 490.875 cubic feet
  5. Divide volume for hemisphere: Since we need the volume of a hemisphere, we divide the volume of the sphere by 22.\newlineVhemisphere=Vsphere2V_{\text{hemisphere}} = \frac{V_{\text{sphere}}}{2}\newlineVhemisphere490.8752V_{\text{hemisphere}} \approx \frac{490.875}{2}
  6. Calculate hemisphere volume: Calculate the volume of the hemisphere. Vhemisphere245.4375V_{\text{hemisphere}} \approx 245.4375 cubic feet
  7. Round volume to nearest tenth: Round the volume of the hemisphere to the nearest tenth of a cubic foot. \newlineVhemisphere rounded245.4V_{\text{hemisphere rounded}} \approx 245.4 cubic feet

More problems from Convert between customary and metric systems