Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume, in cubic 
cm, of a cylinder with a height of 
4cm and a base radius of 
5cm, to the nearest tenths place?
Answer: 
V=◻cm^(3)

What is the volume, in cubic cm \mathrm{cm} , of a cylinder with a height of 4 cm 4 \mathrm{~cm} and a base radius of 5 cm 5 \mathrm{~cm} , to the nearest tenths place?\newlineAnswer: V=cm3 V=\square \mathrm{cm}^{3}

Full solution

Q. What is the volume, in cubic cm \mathrm{cm} , of a cylinder with a height of 4 cm 4 \mathrm{~cm} and a base radius of 5 cm 5 \mathrm{~cm} , to the nearest tenths place?\newlineAnswer: V=cm3 V=\square \mathrm{cm}^{3}
  1. Identify Formula: Identify the formula to calculate the volume of a cylinder.\newlineThe formula for the volume of a cylinder is V=πr2hV = \pi r^2 h, where VV is the volume, rr is the radius of the base, and hh is the height of the cylinder.
  2. Plug Values: Plug the given values into the formula.\newlineGiven: radius r=5r = 5 cm, height h=4h = 4 cm.\newlineSo, V=π×(5 cm)2×(4 cm)V = \pi \times (5 \text{ cm})^2 \times (4 \text{ cm}).
  3. Calculate Area: Calculate the base area.\newlineBase area A=π×(5cm)2=π×25cm2A = \pi \times (5 \, \text{cm})^2 = \pi \times 25 \, \text{cm}^2.
  4. Calculate Volume: Calculate the volume. V=Base area A×height h=π×25cm2×4cm.V = \text{Base area } A \times \text{height } h = \pi \times 25 \, \text{cm}^2 \times 4 \, \text{cm}.
  5. Perform Multiplication: Perform the multiplication to find the volume.\newlineV=π×25cm2×4cm=100πcm3V = \pi \times 25 \, \text{cm}^2 \times 4 \, \text{cm} = 100\pi \, \text{cm}^3.
  6. Use Value of π\pi: Use the value of π\pi to calculate the volume numerically.\newlineAssuming π3.1416\pi \approx 3.1416, we get V100×3.1416cm3V \approx 100 \times 3.1416 \, \text{cm}^3.
  7. Calculate Numerical Value: Calculate the numerical value. V314.16V \approx 314.16 cm3^3.
  8. Round Volume: Round the volume to the nearest tenths place. V314.2cm3V \approx 314.2\,\text{cm}^3.

More problems from Convert between customary and metric systems