Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume, in cubic 
cm, of a cylinder with a height of 
15cm and a base radius of 
9cm, to the nearest tenths place?
Answer: 
V=◻cm^(3)

What is the volume, in cubic cm \mathrm{cm} , of a cylinder with a height of 15 cm 15 \mathrm{~cm} and a base radius of 9 cm 9 \mathrm{~cm} , to the nearest tenths place?\newlineAnswer: V=cm3 V=\square \mathrm{cm}^{3}

Full solution

Q. What is the volume, in cubic cm \mathrm{cm} , of a cylinder with a height of 15 cm 15 \mathrm{~cm} and a base radius of 9 cm 9 \mathrm{~cm} , to the nearest tenths place?\newlineAnswer: V=cm3 V=\square \mathrm{cm}^{3}
  1. Identify formula for volume: Identify the formula for the volume of a cylinder.\newlineThe formula for the volume of a cylinder is V=πr2hV = \pi r^2 h, where VV is the volume, rr is the radius of the base, and hh is the height of the cylinder.
  2. Plug given values: Plug the given values into the formula.\newlineGiven: radius r=9r = 9 cm, height h=15h = 15 cm.\newlineSo, V=π×(9 cm)2×(15 cm)V = \pi \times (9 \text{ cm})^2 \times (15 \text{ cm}).
  3. Calculate volume: Calculate the volume using the values.\newlineV=π×81cm2×15cmV = \pi \times 81 \, \text{cm}^2 \times 15 \, \text{cm}.\newlineV=π×1,215cm3V = \pi \times 1,215 \, \text{cm}^3.
  4. Evaluate expression: Evaluate the expression to find the volume.\newlineUsing π3.1416\pi \approx 3.1416, we get:\newlineV3.1416×1,215cm3V \approx 3.1416 \times 1,215 \, \text{cm}^3.\newlineV3,816.636cm3V \approx 3,816.636 \, \text{cm}^3.
  5. Round volume: Round the volume to the nearest tenths place. V3,816.6V \approx 3,816.6 cm3^3.

More problems from Convert between customary and metric systems