Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
((5)/(6))^(x) as 
A^(-8x) ?
Choose 1 answer:
A) 
A=((5)/(6))^((1)/(8))
(B)

A=((5)/(6))^(-(1)/(8))
(C) 
A=-8*(5)/(6)
(D) 
A=(1)/(8)

What is the value of A A when we rewrite (56)x \left(\frac{5}{6}\right)^{x} as A8x A^{-8x} ? \newlineChoose 11 answer: \newline(A) A=(56)18 A=\left(\frac{5}{6}\right)^{\frac{1}{8}} \newline (B) A=(56)18 A=\left(\frac{5}{6}\right)^{-\frac{1}{8}} \newline (C) A=856 A=-8\cdot\frac{5}{6} \newline (D) A=18 A=\frac{1}{8}

Full solution

Q. What is the value of A A when we rewrite (56)x \left(\frac{5}{6}\right)^{x} as A8x A^{-8x} ? \newlineChoose 11 answer: \newline(A) A=(56)18 A=\left(\frac{5}{6}\right)^{\frac{1}{8}} \newline (B) A=(56)18 A=\left(\frac{5}{6}\right)^{-\frac{1}{8}} \newline (C) A=856 A=-8\cdot\frac{5}{6} \newline (D) A=18 A=\frac{1}{8}
  1. Identify Base AA: We want to express (56)x\left(\frac{5}{6}\right)^x in the form of A8xA^{-8x}. To do this, we need to find a base AA such that raising AA to the power of 8x-8x will give us the same result as (56)x\left(\frac{5}{6}\right)^x.
  2. Equating the Expressions: To find AA, we equate the two expressions: (56)x=A8x\left(\frac{5}{6}\right)^x = A^{-8x}
  3. Setting Exponents Equal: Since the exponents must be the same for the bases to be equal, we can set the exponents equal to each other: x=8xlog(56)(A)x = -8x \cdot \log_{\left(\frac{5}{6}\right)}(A)
  4. Isolating the Term: Divide both sides by xx to isolate the term with AA: \newline1=8log(56)(A)1 = -8 \cdot \log_{\left(\frac{5}{6}\right)}(A)
  5. Solving for Logarithm: Now, divide both sides by 8-8 to solve for log(56)(A)\log_{(\frac{5}{6})}(A): \newline18=log(56)(A)-\frac{1}{8} = \log_{(\frac{5}{6})}(A)
  6. Removing Logarithm: To remove the logarithm, we raise the base (56)\left(\frac{5}{6}\right) to the power of both sides of the equation:\newline(56)18=A\left(\frac{5}{6}\right)^{-\frac{1}{8}} = A
  7. Removing Logarithm: To remove the logarithm, we raise the base (56)\left(\frac{5}{6}\right) to the power of both sides of the equation:\newline(56)18=A\left(\frac{5}{6}\right)^{-\frac{1}{8}} = AWe can now see that the correct expression for AA is (56)18\left(\frac{5}{6}\right)^{-\frac{1}{8}}, which corresponds to answer choice (B)(B).

More problems from Find derivatives of using multiple formulae