Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the total number of different 12-letter arrangements that can be formed using the letters in the word ANNUNCIATION?
Answer:

What is the total number of different 1212-letter arrangements that can be formed using the letters in the word ANNUNCIATION?\newlineAnswer:

Full solution

Q. What is the total number of different 1212-letter arrangements that can be formed using the letters in the word ANNUNCIATION?\newlineAnswer:
  1. Determine Frequency of Each Letter: Determine the frequency of each letter in the word ANNUNCIATION. AA appears 33 times, NN appears 44 times, UU appears 11 time, CC appears 11 time, II appears 11 time, 3300 appears 11 time, and 3322 appears 11 time.
  2. Calculate Total Number of Letters Factorial: Calculate the factorial of the total number of letters.\newlineThe word ANNUNCIATION has 1212 letters, so we calculate 12!12! (1212 factorial).\newline12!=12×11×10×9×8×7×6×5×4×3×2×112! = 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1
  3. Calculate Factorial of Each Letter Frequency: Calculate the factorial of the frequency of each letter.\newlineA appears 33 times, so we calculate 3!3!.\newline3!=3×2×13! = 3 \times 2 \times 1\newlineN appears 44 times, so we calculate 4!4!.\newline4!=4×3×2×14! = 4 \times 3 \times 2 \times 1\newlineU, C, I, O, and T each appear 11 time, so their factorials are all 1!1!.\newline1!=11! = 1
  4. Use Formula for Permutations: Use the formula for permutations of a multiset to find the total number of different arrangements.\newlineThe formula is:\newlineTotal arrangements =12!3!×4!×1!×1!×1!×1!×1!= \frac{12!}{3! \times 4! \times 1! \times 1! \times 1! \times 1! \times 1!}
  5. Perform Calculations: Perform the calculations.\newlineTotal arrangements = (12×11×10×9×8×7×6×5×4×3×2×1)/((3×2×1)×(4×3×2×1)×1×1×1×1×1)(12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1) / ((3 \times 2 \times 1) \times (4 \times 3 \times 2 \times 1) \times 1 \times 1 \times 1 \times 1 \times 1)\newlineTotal arrangements = (12×11×10×9×8×7×6×5)/(6×24)(12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5) / (6 \times 24)\newlineTotal arrangements = (12×11×10×9×8×7×5)/24(12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 5) / 24\newlineTotal arrangements = (12×11×10×9×8×35)/24(12 \times 11 \times 10 \times 9 \times 8 \times 35) / 24\newlineTotal arrangements = (12×11×10×9×2×35)(12 \times 11 \times 10 \times 9 \times 2 \times 35)\newlineTotal arrangements = (12×11×10×18×35)(12 \times 11 \times 10 \times 18 \times 35)\newlineTotal arrangements = (12×11×180×35)(12 \times 11 \times 180 \times 35)\newlineTotal arrangements = (12×1980×35)(12 \times 1980 \times 35)\newlineTotal arrangements = (12×69300)(12 \times 69300)\newlineTotal arrangements = 831600831600

More problems from Convert between customary and metric systems