Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the inverse of the function

{:[g(x)=-(2)/(3)x-5?],[g^(-1)(x)=◻]:}

What is the inverse of the function\newlineg(x)=23x5?g1(x)= \begin{array}{l} g(x)=-\frac{2}{3} x-5 ? \\ g^{-1}(x)=\square \end{array}

Full solution

Q. What is the inverse of the function\newlineg(x)=23x5?g1(x)= \begin{array}{l} g(x)=-\frac{2}{3} x-5 ? \\ g^{-1}(x)=\square \end{array}
  1. Replace with yy: To find the inverse of the function g(x)=(23)x5g(x) = -(\frac{2}{3})x - 5, we first replace g(x)g(x) with yy to make the equation easier to work with.\newliney=(23)x5y = -(\frac{2}{3})x - 5
  2. Swap x and y: Next, we swap x and y to find the inverse function. This means we replace yy with xx and xx with yy in the equation.x=(23)y5x = -\left(\frac{2}{3}\right)y - 5
  3. Isolate y term: Now, we solve for yy to get the inverse function. First, we add 55 to both sides of the equation to isolate the term with yy on one side.x+5=(23)yx + 5 = -(\frac{2}{3})y
  4. Multiply by 32-\frac{3}{2}: Next, we multiply both sides of the equation by 32-\frac{3}{2} to solve for yy.y=32×(x+5)y = -\frac{3}{2} \times (x + 5)
  5. Simplify equation: We distribute the 32-\frac{3}{2} across the parentheses to simplify the equation.\newliney=32×x32×5y = -\frac{3}{2} \times x - \frac{3}{2} \times 5
  6. Simplify constant term: Finally, we simplify the constant term 32×5-\frac{3}{2} \times 5.\newliney=32×x152y = -\frac{3}{2} \times x - \frac{15}{2}

More problems from Identify inverse functions