Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the diameter of a hemisphere with a volume of 
52079ft^(3), to the nearest tenth of a foot?
Answer: 
ft

What is the diameter of a hemisphere with a volume of 52079ft3 52079 \mathrm{ft}^{3} , to the nearest tenth of a foot?\newlineAnswer: ft \mathrm{ft}

Full solution

Q. What is the diameter of a hemisphere with a volume of 52079ft3 52079 \mathrm{ft}^{3} , to the nearest tenth of a foot?\newlineAnswer: ft \mathrm{ft}
  1. Identify Volume Formula: Identify the formula for the volume of a hemisphere.\newlineThe volume VV of a hemisphere is given by the formula V=23πr3V = \frac{2}{3}\pi r^3, where rr is the radius of the hemisphere.
  2. Solve for Radius: Solve the formula for the radius rr. We need to isolate rr in the formula V=23πr3V = \frac{2}{3}\pi r^3. To do this, we will divide both sides of the equation by 23π\frac{2}{3}\pi. r3=V(23π)r^3 = \frac{V}{\left(\frac{2}{3}\pi\right)}
  3. Plug in Volume: Plug in the given volume into the formula.\newlineWe know the volume V=52079 ft3V = 52079 \text{ ft}^3. Now we substitute this value into the equation from Step 22.\newliner3=52079(23π)r^3 = \frac{52079}{\left(\frac{2}{3}\pi\right)}
  4. Calculate Radius: Calculate the radius.\newliner3=52079(23)πr^3 = \frac{52079}{\left(\frac{2}{3}\right)\pi}\newliner3=520792π3r^3 = \frac{52079}{\frac{2\pi}{3}}\newliner3=52079×(32π)r^3 = 52079 \times \left(\frac{3}{2\pi}\right)\newliner352079×(32×3.14159)r^3 \approx 52079 \times \left(\frac{3}{2 \times 3.14159}\right)\newliner352079×(36.28318)r^3 \approx 52079 \times \left(\frac{3}{6.28318}\right)\newliner352079×0.47746r^3 \approx 52079 \times 0.47746\newliner324865.5r^3 \approx 24865.5\newlineNow we take the cube root of both sides to solve for r.\newliner24865.53r \approx \sqrt[3]{24865.5}\newliner29.2r \approx 29.2 ft
  5. Calculate Diameter: Calculate the diameter of the hemisphere.\newlineThe diameter dd is twice the radius, so d=2rd = 2r.\newlined=2×29.2d = 2 \times 29.2 ft\newlined58.4d \approx 58.4 ft

More problems from Convert between customary and metric systems