Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
-(3)/(2)-(1)/(2)i ?

(3)/(2)-(1)/(2)i

-(3)/(2)+(1)/(2)i

-(1)/(2)-(3)/(2)i

(3)/(2)+(1)/(2)i

What is the conjugate of 3212i -\frac{3}{2}-\frac{1}{2} i ?\newline3212i \frac{3}{2}-\frac{1}{2} i \newline32+12i -\frac{3}{2}+\frac{1}{2} i \newline1232i -\frac{1}{2}-\frac{3}{2} i \newline32+12i \frac{3}{2}+\frac{1}{2} i

Full solution

Q. What is the conjugate of 3212i -\frac{3}{2}-\frac{1}{2} i ?\newline3212i \frac{3}{2}-\frac{1}{2} i \newline32+12i -\frac{3}{2}+\frac{1}{2} i \newline1232i -\frac{1}{2}-\frac{3}{2} i \newline32+12i \frac{3}{2}+\frac{1}{2} i
  1. Understand complex conjugate: Understand the concept of a complex conjugate. The conjugate of a complex number a+bia + bi is abia - bi, where aa and bb are real numbers. The conjugate is found by changing the sign of the imaginary part of the complex number.
  2. Identify complex number: Identify the complex number to find its conjugate.\newlineThe given complex number is 3212i-\frac{3}{2} - \frac{1}{2}i.
  3. Apply conjugation concept: Apply the concept of conjugation to the given complex number.\newlineTo find the conjugate, we change the sign of the imaginary part. The real part remains the same.\newlineConjugate of 3212i-\frac{3}{2} - \frac{1}{2}i is 32+12i-\frac{3}{2} + \frac{1}{2}i.
  4. Verify result: Verify the result.\newlineThe conjugate of a complex number should have the same real part and the opposite sign for the imaginary part. Our result matches this definition.

More problems from Multiplication with rational exponents