Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the average value of 
root(3)(x) on the interval 
-5 <= x <= 9 ?
Choose 1 answer:
(A) 
(3)/(56)*(root(4)(9^(3))-root(4)(5^(3)))
(B) 
(3)/(56)*(root(3)(9^(4))-root(3)(5^(4)))
(C) 
(1)/(2)*(root(3)(9)-root(3)(-5))
(D) 
(1)/(2)*(root(3)(9)+root(3)(-5))

What is the average value of x3 \sqrt[3]{x} on the interval 5x9 -5 \leq x \leq 9 ?\newlineChoose 11 answer:\newline(A) 356(934534) \frac{3}{56} \cdot\left(\sqrt[4]{9^{3}}-\sqrt[4]{5^{3}}\right) \newline(B) 356(943543) \frac{3}{56} \cdot\left(\sqrt[3]{9^{4}}-\sqrt[3]{5^{4}}\right) \newline(C) 12(9353) \frac{1}{2} \cdot(\sqrt[3]{9}-\sqrt[3]{-5}) \newline(D) 12(93+53) \frac{1}{2} \cdot(\sqrt[3]{9}+\sqrt[3]{-5})

Full solution

Q. What is the average value of x3 \sqrt[3]{x} on the interval 5x9 -5 \leq x \leq 9 ?\newlineChoose 11 answer:\newline(A) 356(934534) \frac{3}{56} \cdot\left(\sqrt[4]{9^{3}}-\sqrt[4]{5^{3}}\right) \newline(B) 356(943543) \frac{3}{56} \cdot\left(\sqrt[3]{9^{4}}-\sqrt[3]{5^{4}}\right) \newline(C) 12(9353) \frac{1}{2} \cdot(\sqrt[3]{9}-\sqrt[3]{-5}) \newline(D) 12(93+53) \frac{1}{2} \cdot(\sqrt[3]{9}+\sqrt[3]{-5})
  1. Set up integral: To find the average value of a function f(x)f(x) on the interval [a,b][a, b], we use the formula:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \cdot \int_{a}^{b} f(x) \, dx\newlineHere, f(x)=x3=x13f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}, a=5a = -5, and b=9b = 9.
  2. Calculate interval length: First, we need to set up the integral to find the average value:\newlineAverage value = (1/(9(5)))×59x(1/3)dx(1/(9 - (-5))) \times \int_{-5}^{9} x^{(1/3)} \, dx
  3. Apply power rule: Calculate the denominator of the fraction, which is the length of the interval: 9(5)=9+5=149 - (-5) = 9 + 5 = 14
  4. Evaluate antiderivative: Now, the average value formula becomes:\newlineAverage value = (1/14)×59x(1/3)dx(1/14) \times \int_{-5}^{9} x^{(1/3)} \, dx
  5. Substitute values: To integrate x13x^{\frac{1}{3}}, we use the power rule for integration, which states that xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where CC is the constant of integration. Here, n=13n = \frac{1}{3}.
  6. Find average value: Applying the power rule, we get:\newlinex13dx=x13+113+1+C\int x^{\frac{1}{3}} dx = \frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1} + C\newline= x4343+C\frac{x^{\frac{4}{3}}}{\frac{4}{3}} + C\newline= 34x43+C\frac{3}{4} \cdot x^{\frac{4}{3}} + C
  7. Match with options: Now we need to evaluate this antiderivative from 5-5 to 99:\newline(34)[x(43)](\frac{3}{4}) \cdot [x^{(\frac{4}{3})}] from 5-5 to 99\newline= (34)[9(43)(5)(43)](\frac{3}{4}) \cdot [9^{(\frac{4}{3})} - (-5)^{(\frac{4}{3})}]
  8. Match with options: Now we need to evaluate this antiderivative from 5-5 to 99:(34)[x(43)](\frac{3}{4}) \cdot [x^{(\frac{4}{3})}] from 5-5 to 99=(34)[9(43)(5)(43)]= (\frac{3}{4}) \cdot [9^{(\frac{4}{3})} - (-5)^{(\frac{4}{3})}]Since we are dealing with real numbers, the cube root of a negative number is negative, and raising it to the fourth power will give us a positive result. So, (5)(43)(-5)^{(\frac{4}{3})} is the same as (5(13))4(5^{(\frac{1}{3})})^4, which is 5(43)5^{(\frac{4}{3})}.
  9. Match with options: Now we need to evaluate this antiderivative from 5-5 to 99:
    (34)[x(43)](\frac{3}{4}) \cdot [x^{(\frac{4}{3})}] from 5-5 to 99
    = (34)[9(43)(5)(43)](\frac{3}{4}) \cdot [9^{(\frac{4}{3})} - (-5)^{(\frac{4}{3})}]Since we are dealing with real numbers, the cube root of a negative number is negative, and raising it to the fourth power will give us a positive result. So, (5)(43)(-5)^{(\frac{4}{3})} is the same as (5(13))4(5^{(\frac{1}{3})})^4, which is 5(43)5^{(\frac{4}{3})}.Now we substitute the values into the expression:
    (34)[9(43)5(43)](\frac{3}{4}) \cdot [9^{(\frac{4}{3})} - 5^{(\frac{4}{3})}]
  10. Match with options: Now we need to evaluate this antiderivative from 5-5 to 99:
    (34)[x(43)](\frac{3}{4}) \cdot [x^{(\frac{4}{3})}] from 5-5 to 99
    = (34)[9(43)(5)(43)](\frac{3}{4}) \cdot [9^{(\frac{4}{3})} - (-5)^{(\frac{4}{3})}]Since we are dealing with real numbers, the cube root of a negative number is negative, and raising it to the fourth power will give us a positive result. So, (5)(43)(-5)^{(\frac{4}{3})} is the same as (5(13))4(5^{(\frac{1}{3})})^4, which is 5(43)5^{(\frac{4}{3})}.Now we substitute the values into the expression:
    (34)[9(43)5(43)](\frac{3}{4}) \cdot [9^{(\frac{4}{3})} - 5^{(\frac{4}{3})}]Finally, we multiply this by the reciprocal of the interval length to find the average value:
    Average value = 9900
    = 9911
  11. Match with options: Now we need to evaluate this antiderivative from 5-5 to 99:
    (3/4)[x(4/3)](3/4) \cdot [x^{(4/3)}] from 5-5 to 99
    = (3/4)[9(4/3)(5)(4/3)](3/4) \cdot [9^{(4/3)} - (-5)^{(4/3)}]Since we are dealing with real numbers, the cube root of a negative number is negative, and raising it to the fourth power will give us a positive result. So, (5)(4/3)(-5)^{(4/3)} is the same as (5(1/3))4(5^{(1/3)})^4, which is 5(4/3)5^{(4/3)}.Now we substitute the values into the expression:
    (3/4)[9(4/3)5(4/3)](3/4) \cdot [9^{(4/3)} - 5^{(4/3)}]Finally, we multiply this by the reciprocal of the interval length to find the average value:
    Average value = 9900
    = 9911We can now match our result with the given options. The correct answer is:
    (B) 9922

More problems from Multiplication with rational exponents