Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the average value of 
e^(x) on the interval 
[3,9] ?
Choose 1 answer:
(A) 
(e^(9)+e^(3))/(6)
(B) 
(e^(9)+e^(3))/(2)
(C) 
(e^(9)-e^(3))/(6)
(D) 
(e^(9)-e^(3))/(2)

What is the average value of ex e^{x} on the interval [3,9] [3,9] ?\newlineChoose 11 answer:\newline(A) e9+e36 \frac{e^{9}+e^{3}}{6} \newline(B) e9+e32 \frac{e^{9}+e^{3}}{2} \newline(C) e9e36 \frac{e^{9}-e^{3}}{6} \newline(D) e9e32 \frac{e^{9}-e^{3}}{2}

Full solution

Q. What is the average value of ex e^{x} on the interval [3,9] [3,9] ?\newlineChoose 11 answer:\newline(A) e9+e36 \frac{e^{9}+e^{3}}{6} \newline(B) e9+e32 \frac{e^{9}+e^{3}}{2} \newline(C) e9e36 \frac{e^{9}-e^{3}}{6} \newline(D) e9e32 \frac{e^{9}-e^{3}}{2}
  1. Formula for Average Value: The average value of a continuous function f(x)f(x) on the interval [a,b][a, b] is given by the formula:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \int_{a}^{b} f(x) \, dx\newlineFor the function exe^{x} on the interval [3,9][3,9], we have:\newlineAverage value = 1(93)39exdx\frac{1}{(9-3)} \int_{3}^{9} e^{x} \, dx
  2. Calculate Integral of exe^{x}: Calculate the integral of exe^{x} from 33 to 99. The integral of exe^{x} with respect to xx is exe^{x}, so we evaluate it at the bounds 99 and 33: 39exdx=ex39=e9e3\int_{3}^{9} e^{x} dx = e^{x} |_{3}^{9} = e^{9} - e^{3}
  3. Substitute Integral Result: Substitute the integral result into the average value formula:\newlineAverage value = (1/(93))×(e9e3)(1/(9-3)) \times (e^{9} - e^{3})\newlineAverage value = (1/6)×(e9e3)(1/6) \times (e^{9} - e^{3})
  4. Simplify to Find Average Value: Simplify the expression to find the average value:\newlineAverage value = e9e36\frac{e^{9} - e^{3}}{6}\newlineThis corresponds to answer choice (C).

More problems from Find derivatives of using multiple formulae