Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is 
lim_(x rarr oo)(x^(2)-4)/(2+x-4x^(2))?
(A) -2
(B) 
-(1)/(4)
(C) 
(1)/(2)
(D) 1
(E) The limit does not exist.

What is limxx242+x4x2? \lim _{x \rightarrow \infty} \frac{x^{2}-4}{2+x-4 x^{2}} ? \newline(A) 2-2\newline(B) 14 -\frac{1}{4} \newline(C) 12 \frac{1}{2} \newline(D) 11\newline(E) The limit does not exist.

Full solution

Q. What is limxx242+x4x2? \lim _{x \rightarrow \infty} \frac{x^{2}-4}{2+x-4 x^{2}} ? \newline(A) 2-2\newline(B) 14 -\frac{1}{4} \newline(C) 12 \frac{1}{2} \newline(D) 11\newline(E) The limit does not exist.
  1. Identify Power Levels: Identify the highest power of xx in the numerator and the denominator to simplify the expression.\newlineNumerator highest power: x2x^2\newlineDenominator highest power: 4x2-4x^2
  2. Simplify by Division: Simplify the expression by dividing both the numerator and the denominator by x2x^2. \newlinelimx[x2x24x2]/[2x2+xx24x2x2]\lim_{x \to \infty} \left[\frac{x^2}{x^2} - \frac{4}{x^2}\right] / \left[\frac{2}{x^2} + \frac{x}{x^2} - \frac{4x^2}{x^2}\right]\newline=limx[10]/[0+04]= \lim_{x \to \infty} \left[1 - 0\right] / \left[0 + 0 - 4\right]\newline=limx14= \lim_{x \to \infty} \frac{1}{-4}
  3. Calculate Final Limit: Calculate the final limit. limx14=14\lim_{x \rightarrow \infty} \frac{1}{-4} = -\frac{1}{4}

More problems from Find derivatives of logarithmic functions