Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=xf(x) = -x\newlineg(x)=x25xg(x) = -x^2 - 5x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=xf(x) = -x\newlineg(x)=x25xg(x) = -x^2 - 5x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define Functions: We have: \newlinef(x)=xf(x) = -x \newlineg(x)=x25xg(x) = -x^2 - 5x \newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(x)(x25x)(f * g)(x) = (-x) * (-x^2 - 5x)
  3. Multiply Functions: Distribute x-x across the terms in g(x)g(x).(fg)(x)=(x)(x2)+(x)(5x)(f * g)(x) = (-x) * (-x^2) + (-x) * (-5x)
  4. Distribute Terms: Perform the multiplication.\newline(fg)(x)=x3+5x2(f * g)(x) = x^3 + 5x^2

More problems from Add and subtract functions