Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=x+5f(x) = -x + 5\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=x+5f(x) = -x + 5\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Multiply Functions: We have: \newlinef(x)=x+5f(x) = -x + 5 \newlineg(x)=3x2g(x) = 3x^2 \newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(x+5)(3x2)(f * g)(x) = (-x + 5) * (3x^2)
  3. Distribute Terms: Distribute each term in the first polynomial over the second polynomial.\newline(fg)(x)=(x)(3x2)+5(3x2)(f * g)(x) = (-x) * (3x^2) + 5 * (3x^2)
  4. Perform Multiplication: Perform the multiplication for each term.\newline(fg)(x)=3x3+15x2(f * g)(x) = -3x^3 + 15x^2
  5. Check Simplification: Check for like terms and simplify if necessary.\newlineThere are no like terms in 3x3+15x2-3x^3 + 15x^2, so the expression is already in its simplest form.

More problems from Add and subtract functions