Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=x2f(x) = -x^2\newlineg(x)=3x+3g(x) = -3x + 3\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=x2f(x) = -x^2\newlineg(x)=3x+3g(x) = -3x + 3\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula for (fg)(x)(f * g)(x): Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Multiply f(x)f(x) and g(x)g(x): We have:\newlinef(x)=x2f(x) = -x^2\newlineg(x)=3x+3g(x) = -3x + 3\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(x2)(3x+3)(f * g)(x) = (-x^2) * (-3x + 3)
  3. Distribute x2-x^2: Distribute x2-x^2 to both terms in the parentheses.\newline(fg)(x)=(x2)(3x)+(x2)3(f \cdot g)(x) = (-x^2) \cdot (-3x) + (-x^2) \cdot 3
  4. Perform multiplication for each term: Perform the multiplication for each term. (fg)(x)=3x33x2(f * g)(x) = 3x^3 - 3x^2
  5. Express answer as simplified polynomial: Express your answer as a simplified polynomial.\newlineThe polynomial is already in its simplest form, so no further simplification is needed.\newline(fg)(x)=3x33x2(f * g)(x) = 3x^3 - 3x^2

More problems from Add and subtract functions