Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=5xf(x) = 5x\newlineg(x)=3x28xg(x) = 3x^2 - 8x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=5xf(x) = 5x\newlineg(x)=3x28xg(x) = 3x^2 - 8x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define Product: We have:\newlinef(x)=5xf(x) = 5x\newlineg(x)=3x28xg(x) = 3x^2 - 8x\newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x).\newline(fg)(x)=5x(3x28x)(f * g)(x) = 5x * (3x^2 - 8x)
  3. Multiply Functions: Distribute 5x5x across the terms in g(x)g(x).(fg)(x)=5x3x25x8x(f * g)(x) = 5x * 3x^2 - 5x * 8x
  4. Distribute Terms: Perform the multiplication.\newline(fg)(x)=15x340x2(f * g)(x) = 15x^3 - 40x^2
  5. Perform Multiplication: Express your answer as a simplified polynomial. The polynomial is already in its simplest form, so no further simplification is needed.

More problems from Add and subtract functions