Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+4f(x) = 5x + 4\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+4f(x) = 5x + 4\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define Functions: We have:\newlinef(x)=5x+4f(x) = 5x + 4\newlineg(x)=3x2g(x) = -3x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(5x+4)(3x2)(f * g)(x) = (5x + 4) * (-3x^2)
  3. Multiply Functions: Distribute each term in the first polynomial by each term in the second polynomial.\newline(fg)(x)=5x(3x2)+4(3x2)(f * g)(x) = 5x * (-3x^2) + 4 * (-3x^2)
  4. Distribute Terms: Perform the multiplication for each term.\newline(fg)(x)=15x312x2(f * g)(x) = -15x^3 - 12x^2
  5. Perform Multiplication: Express your answer as a simplified polynomial.\newlineThe polynomial is already in its simplest form, so no further simplification is needed.\newline(fg)(x)=15x312x2(f \cdot g)(x) = -15x^3 - 12x^2

More problems from Add and subtract functions