Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+1f(x) = -5x + 1\newlineg(x)=3xg(x) = 3x\newlineWrite your answer as a polynomial or a rational function in simplest form.

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+1f(x) = -5x + 1\newlineg(x)=3xg(x) = 3x\newlineWrite your answer as a polynomial or a rational function in simplest form.
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given functions: We have:\newlinef(x)=5x+1f(x) = -5x + 1\newlineg(x)=3xg(x) = 3x\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(5x+1)(3x)(f * g)(x) = (-5x + 1) * (3x)
  3. Distribute terms: Distribute each term in the first polynomial by each term in the second polynomial.\newline(fg)(x)=(5x3x)+(13x)(f * g)(x) = (-5x * 3x) + (1 * 3x)
  4. Perform multiplication: Perform the multiplication.\newline(fg)(x)=15x2+3x(f \cdot g)(x) = -15x^2 + 3x

More problems from Add and subtract functions