Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+1f(x) = 5x + 1\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+1f(x) = 5x + 1\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given Functions: We have: \newlinef(x)=5x+1f(x) = 5x + 1 \newlineg(x)=3x2g(x) = 3x^2 \newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(5x+1)(3x2)(f * g)(x) = (5x + 1) * (3x^2)
  3. Distribute Terms: Distribute each term in the first polynomial over the second polynomial.\newline(fg)(x)=5x3x2+13x2(f * g)(x) = 5x * 3x^2 + 1 * 3x^2
  4. Perform Multiplication: Perform the multiplication for each term.\newline(fg)(x)=15x3+3x2(f * g)(x) = 15x^3 + 3x^2

More problems from Add and subtract functions