Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+1f(x) = 5x + 1\newlineg(x)=2x2g(x) = -2x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=5x+1f(x) = 5x + 1\newlineg(x)=2x2g(x) = -2x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define functions: We have:\newlinef(x)=5x+1f(x) = 5x + 1\newlineg(x)=2x2g(x) = -2x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(5x+1)(2x2)(f * g)(x) = (5x + 1) * (-2x^2)
  3. Multiply functions: Distribute the terms of the first polynomial across the terms of the second polynomial.\newline(fg)(x)=5x(2x2)+1(2x2)(f * g)(x) = 5x * (-2x^2) + 1 * (-2x^2)
  4. Distribute terms: Perform the multiplication for each term.\newline(fg)(x)=10x32x2(f * g)(x) = -10x^3 - 2x^2
  5. Perform multiplication: Express your answer as a simplified polynomial.\newlineThe polynomial is already in its simplest form, so no further simplification is needed.\newline(fg)(x)=10x32x2(f \cdot g)(x) = -10x^3 - 2x^2

More problems from Add and subtract functions