Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=4xf(x) = -4x\newlineg(x)=3x28xg(x) = -3x^2 - 8x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=4xf(x) = -4x\newlineg(x)=3x28xg(x) = -3x^2 - 8x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given Functions: We have:\newlinef(x)=4xf(x) = -4x\newlineg(x)=3x28xg(x) = -3x^2 - 8x\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(4x)(3x28x)(f * g)(x) = (-4x) * (-3x^2 - 8x)
  3. Multiply Functions: Distribute 4x-4x across the terms in g(x)g(x):
    (fg)(x)=(4x)(3x2)+(4x)(8x)(f * g)(x) = (-4x) * (-3x^2) + (-4x) * (-8x)
  4. Distribute 4x-4x: Perform the multiplication:\newline(fg)(x)=12x3+32x2(f \cdot g)(x) = 12x^3 + 32x^2
  5. Perform Multiplication: Express your answer as a simplified polynomial.\newlineThe polynomial is already in simplest form, so we are done.\newline(fg)(x)=12x3+32x2(f * g)(x) = 12x^3 + 32x^2

More problems from Add and subtract functions