Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=4x+5f(x) = 4x + 5\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=4x+5f(x) = 4x + 5\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify the formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define f(x)f(x) and g(x)g(x): We have:\newlinef(x)=4x+5f(x) = 4x + 5\newlineg(x)=3x2g(x) = -3x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(4x+5)(3x2)(f * g)(x) = (4x + 5) * (-3x^2)
  3. Multiply the functions: Distribute each term in the first polynomial over the second polynomial.\newline(fg)(x)=4x(3x2)+5(3x2)(f * g)(x) = 4x * (-3x^2) + 5 * (-3x^2)
  4. Distribute terms: Perform the multiplication for each term.\newline(fg)(x)=12x315x2(f * g)(x) = -12x^3 - 15x^2

More problems from Add and subtract functions