Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=4x+2f(x) = 4x + 2\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=4x+2f(x) = 4x + 2\newlineg(x)=3x2g(x) = 3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define functions: We have:\newlinef(x)=4x+2f(x) = 4x + 2\newlineg(x)=3x2g(x) = 3x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(4x+2)(3x2)(f * g)(x) = (4x + 2) * (3x^2)
  3. Multiply functions: Distribute each term in the first polynomial over the second polynomial.\newline(fg)(x)=4x3x2+23x2(f * g)(x) = 4x * 3x^2 + 2 * 3x^2
  4. Distribute terms: Perform the multiplication for each term.\newline(fg)(x)=12x3+6x2(f * g)(x) = 12x^3 + 6x^2

More problems from Add and subtract functions