Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3xf(x) = -3x\newlineg(x)=x2+xg(x) = x^2 + x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3xf(x) = -3x\newlineg(x)=x2+xg(x) = x^2 + x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define functions: We have: \newlinef(x)=3xf(x) = -3x \newlineg(x)=x2+xg(x) = x^2 + x \newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x).\newline(fg)(x)=(3x)(x2+x)(f * g)(x) = (-3x) * (x^2 + x)
  3. Multiply functions: Distribute 3x-3x to both terms in the parentheses.\newline(fg)(x)=(3x)x2+(3x)x(f * g)(x) = (-3x) * x^2 + (-3x) * x
  4. Distribute terms: Multiply the terms.\newline(fg)(x)=3x33x2(f * g)(x) = -3x^3 - 3x^2

More problems from Add and subtract functions