Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+5f(x) = 3x + 5\newlineg(x)=5xg(x) = -5x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+5f(x) = 3x + 5\newlineg(x)=5xg(x) = -5x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define functions: We have:\newlinef(x)=3x+5f(x) = 3x + 5\newlineg(x)=5xg(x) = -5x\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(3x+5)(5x)(f * g)(x) = (3x + 5) * (-5x)
  3. Multiply functions: Distribute 5x-5x to both terms in the parentheses.\newline(fg)(x)=3x(5x)+5(5x)(f * g)(x) = 3x * (-5x) + 5 * (-5x)
  4. Distribute terms: Perform the multiplication.\newline(fg)(x)=15x225x(f \cdot g)(x) = -15x^2 - 25x

More problems from Add and subtract functions