Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+5f(x) = -3x + 5\newlineg(x)=2xg(x) = 2x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+5f(x) = -3x + 5\newlineg(x)=2xg(x) = 2x\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given Functions: We have:\newlinef(x)=3x+5f(x) = -3x + 5\newlineg(x)=2xg(x) = 2x\newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x).\newline(fg)(x)=(3x+5)(2x)(f * g)(x) = (-3x + 5) * (2x)
  3. Distribute Terms: Distribute 2x2x to each term in the first polynomial.\newline(fg)(x)=3x2x+52x(f * g)(x) = -3x * 2x + 5 * 2x
  4. Perform Multiplication: Perform the multiplication for each term.\newline(fg)(x)=6x2+10x(f \cdot g)(x) = -6x^2 + 10x
  5. Final Answer: The expression 6x2+10x-6x^2 + 10x is already in its simplest form, so this is our final answer.

More problems from Add and subtract functions