Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+2f(x) = -3x + 2\newlineg(x)=x2g(x) = x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+2f(x) = -3x + 2\newlineg(x)=x2g(x) = x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Multiply Functions: We have:\newlinef(x)=3x+2f(x) = -3x + 2\newlineg(x)=x2g(x) = x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(3x+2)(x2)(f * g)(x) = (-3x + 2) * (x^2)
  3. Distribute Terms: Distribute each term in f(x)f(x) to each term in g(x)g(x) to find the product.(fg)(x)=(3xx2)+(2x2)(f * g)(x) = (-3x * x^2) + (2 * x^2)
  4. Perform Multiplication: Perform the multiplication for each term.\newline(fg)(x)=3x3+2x2(f * g)(x) = -3x^3 + 2x^2

More problems from Add and subtract functions