Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x2f(x) = -3x^2\newlineg(x)=3x+6g(x) = -3x + 6\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x2f(x) = -3x^2\newlineg(x)=3x+6g(x) = -3x + 6\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Multiply Functions: We have:\newlinef(x)=3x2f(x) = -3x^2\newlineg(x)=3x+6g(x) = -3x + 6\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(3x2)(3x+6)(f * g)(x) = (-3x^2) * (-3x + 6)
  3. Distribute Terms: Distribute 3x2-3x^2 to both terms in the second function.\newline(fg)(x)=(3x2)(3x)+(3x2)6(f * g)(x) = (-3x^2) * (-3x) + (-3x^2) * 6
  4. Perform Multiplication: Perform the multiplication for each term.\newline(fg)(x)=9x318x2(f * g)(x) = 9x^3 - 18x^2
  5. Combine Like Terms: Check for any like terms that can be combined.\newlineThere are no like terms in 9x318x29x^3 - 18x^2, so this is the final simplified form.

More problems from Add and subtract functions