Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+1f(x) = 3x + 1\newlineg(x)=x2g(x) = -x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=3x+1f(x) = 3x + 1\newlineg(x)=x2g(x) = -x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Calculate Product: We have:\newlinef(x)=3x+1f(x) = 3x + 1\newlineg(x)=x2g(x) = -x^2\newlineNow, calculate the product (fg)(x)(f * g)(x) by multiplying f(x)f(x) and g(x)g(x) together.\newline(fg)(x)=(3x+1)(x2)(f * g)(x) = (3x + 1) * (-x^2)
  3. Distribute Terms: Distribute x2-x^2 to each term in the binomial (3x+1)(3x + 1). \newline(fg)(x)=3x(x2)+1(x2)(f * g)(x) = 3x * (-x^2) + 1 * (-x^2)
  4. Perform Multiplication: Perform the multiplication for each term.\newline(fg)(x)=3x3x2(f * g)(x) = -3x^3 - x^2
  5. Express Answer: Express your answer as a simplified polynomial. The polynomial is already in its simplest form, so no further simplification is needed.

More problems from Add and subtract functions