Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+4f(x) = -2x + 4\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+4f(x) = -2x + 4\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given functions: We have:\newlinef(x)=2x+4f(x) = -2x + 4\newlineg(x)=3x2g(x) = -3x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(2x+4)(3x2)(f * g)(x) = (-2x + 4) * (-3x^2)
  3. Multiply functions: Distribute 3x2-3x^2 to each term in the polynomial 2x+4-2x + 4.\newline(fg)(x)=(2x3x2)+(43x2)(f * g)(x) = (-2x * -3x^2) + (4 * -3x^2)
  4. Distribute terms: Perform the multiplication for each term.\newline(fg)(x)=6x3+(12x2)(f * g)(x) = 6x^3 + (-12x^2)
  5. Perform multiplication: Combine the like terms if there are any. In this case, there are no like terms to combine.\newlineSo, the final simplified polynomial is:\newline(fg)(x)=6x312x2(f \cdot g)(x) = 6x^3 - 12x^2

More problems from Add and subtract functions