Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+3f(x) = 2x + 3\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+3f(x) = 2x + 3\newlineg(x)=3x2g(x) = -3x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Given functions: We have:\newlinef(x)=2x+3f(x) = 2x + 3\newlineg(x)=3x2g(x) = -3x^2\newlineTo find (fg)(x)(f * g)(x), we need to multiply f(x)f(x) by g(x)g(x).\newline(fg)(x)=(2x+3)(3x2)(f * g)(x) = (2x + 3) * (-3x^2)
  3. Multiply functions: Distribute 3x2-3x^2 to each term in 2x+32x + 3.
    (fg)(x)=2x(3x2)+3(3x2)(f * g)(x) = 2x * (-3x^2) + 3 * (-3x^2)
  4. Distribute terms: Perform the multiplication for each term.\newline(fg)(x)=6x39x2(f * g)(x) = -6x^3 - 9x^2

More problems from Add and subtract functions