Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+1f(x) = -2x + 1\newlineg(x)=2x2g(x) = -2x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______

Full solution

Q. What is (fg)(x)(f * g)(x)?\newlinef(x)=2x+1f(x) = -2x + 1\newlineg(x)=2x2g(x) = -2x^2\newlineWrite your answer as a polynomial or a rational function in simplest form.\newline______
  1. Identify Formula: Identify the formula for (fg)(x)(f * g)(x).(fg)(x)(f * g)(x) is the product of f(x)f(x) and g(x)g(x).(fg)(x)=f(x)g(x)(f * g)(x) = f(x) * g(x)
  2. Define Functions: We have:\newlinef(x)=2x+1f(x) = -2x + 1\newlineg(x)=2x2g(x) = -2x^2\newlineNow, we need to multiply these two functions to find (fg)(x)(f * g)(x).\newline(fg)(x)=(2x+1)(2x2)(f * g)(x) = (-2x + 1) * (-2x^2)
  3. Multiply Functions: Distribute each term in the first polynomial by each term in the second polynomial.\newline(fg)(x)=(2x2x2)+(12x2)(f * g)(x) = (-2x * -2x^2) + (1 * -2x^2)\newline(fg)(x)=(4x3)+(2x2)(f * g)(x) = (4x^3) + (-2x^2)
  4. Distribute Terms: Combine like terms if there are any. In this case, there are no like terms to combine.\newlineSo, the final answer is:\newline(fg)(x)=4x32x2(f * g)(x) = 4x^3 - 2x^2

More problems from Add and subtract functions