Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

V=piint_(-1)^(2)[x+2]^(2)-[x^(2)]^(2)dx

V=π12[x+2]2[x2]2dx V=\pi \int_{-1}^{2}[x+2]^{2}-\left[x^{2}\right]^{2} d x

Full solution

Q. V=π12[x+2]2[x2]2dx V=\pi \int_{-1}^{2}[x+2]^{2}-\left[x^{2}\right]^{2} d x
  1. Expand functions: We are asked to evaluate the definite integral of the function (x+2)2(x2)2(x+2)^2 - (x^2)^2 from x=1x = -1 to x=2x = 2. The first step is to expand the functions inside the integral before integrating.
  2. Substitute expanded forms: Expand (x+2)2(x+2)^2:(x+2)2=x2+4x+4(x+2)^2 = x^2 + 4x + 4
  3. Separate into individual terms: Expand (x2)2(x^2)^2:(x2)2=x4(x^2)^2 = x^4
  4. Integrate each term: Substitute the expanded forms into the integral: V=π12(x2+4x+4x4)dxV = \pi \cdot \int_{-1}^{2} (x^2 + 4x + 4 - x^4) \, dx
  5. Apply limits of integration: Separate the integral into individual terms:\newlineV=π(12x2dx+124xdx+124dx12x4dx)V = \pi \cdot \left(\int_{-1}^{2} x^2 \, dx + \int_{-1}^{2} 4x \, dx + \int_{-1}^{2} 4 \, dx - \int_{-1}^{2} x^4 \, dx\right)
  6. Evaluate at upper and lower limits: Integrate each term separately:\newlinex2dx=13x3\int x^2 \, dx = \frac{1}{3}x^3\newline4xdx=2x2\int 4x \, dx = 2x^2\newline4dx=4x\int 4 \, dx = 4x\newlinex4dx=15x5\int x^4 \, dx = \frac{1}{5}x^5
  7. Perform calculations: Apply the limits of integration to each term: V=π([13x3]12+[2x2]12+[4x]12[15x5]12)V = \pi \cdot (\left[\frac{1}{3}x^3\right]_{-1}^{2} + \left[2x^2\right]_{-1}^{2} + \left[4x\right]_{-1}^{2} - \left[\frac{1}{5}x^5\right]_{-1}^{2})
  8. Simplify the expression: Evaluate each term at the upper and lower limits and subtract: V=π(13(2)313(1)3+2(2)22(1)2+4(2)4(1)15(2)5+15(1)5)V = \pi \cdot \left(\frac{1}{3}(2)^3 - \frac{1}{3}(-1)^3 + 2(2)^2 - 2(-1)^2 + 4(2) - 4(-1) - \frac{1}{5}(2)^5 + \frac{1}{5}(-1)^5\right)
  9. Multiply by pi: Perform the calculations:\newlineV=π×((13)(8)(13)(1)+2(4)2(1)+8(4)(15)(32)+(15)(1))V = \pi \times \left(\left(\frac{1}{3}\right)(8) - \left(\frac{1}{3}\right)(-1) + 2(4) - 2(1) + 8 - (-4) - \left(\frac{1}{5}\right)(32) + \left(\frac{1}{5}\right)(-1)\right)
  10. Multiply by pi: Perform the calculations:\newlineV=π×((13)(8)(13)(1)+2(4)2(1)+8(4)(15)(32)+(15)(1))V = \pi \times \left(\left(\frac{1}{3}\right)(8) - \left(\frac{1}{3}\right)(-1) + 2(4) - 2(1) + 8 - (-4) - \left(\frac{1}{5}\right)(32) + \left(\frac{1}{5}\right)(-1)\right)Simplify the expression:\newlineV=π×((83)+(13)+82+8+4(325)(15))V = \pi \times \left(\left(\frac{8}{3}\right) + \left(\frac{1}{3}\right) + 8 - 2 + 8 + 4 - \left(\frac{32}{5}\right) - \left(\frac{1}{5}\right)\right)\newlineV=π×((93)+6+12(335))V = \pi \times \left(\left(\frac{9}{3}\right) + 6 + 12 - \left(\frac{33}{5}\right)\right)\newlineV=π×(3+6+12(335))V = \pi \times \left(3 + 6 + 12 - \left(\frac{33}{5}\right)\right)\newlineV=π×(21(335))V = \pi \times \left(21 - \left(\frac{33}{5}\right)\right)\newlineV=π×(1055335)V = \pi \times \left(\frac{105}{5} - \frac{33}{5}\right)\newlineV=π×(725)V = \pi \times \left(\frac{72}{5}\right)
  11. Multiply by pi: Perform the calculations:\newlineV=π×((13)(8)(13)(1)+2(4)2(1)+8(4)(15)(32)+(15)(1))V = \pi \times \left(\left(\frac{1}{3}\right)(8) - \left(\frac{1}{3}\right)(-1) + 2(4) - 2(1) + 8 - (-4) - \left(\frac{1}{5}\right)(32) + \left(\frac{1}{5}\right)(-1)\right)Simplify the expression:\newlineV=π×((83)+(13)+82+8+4(325)(15))V = \pi \times \left(\left(\frac{8}{3}\right) + \left(\frac{1}{3}\right) + 8 - 2 + 8 + 4 - \left(\frac{32}{5}\right) - \left(\frac{1}{5}\right)\right)\newlineV=π×((93)+6+12(335))V = \pi \times \left(\left(\frac{9}{3}\right) + 6 + 12 - \left(\frac{33}{5}\right)\right)\newlineV=π×(3+6+12(335))V = \pi \times \left(3 + 6 + 12 - \left(\frac{33}{5}\right)\right)\newlineV=π×(21(335))V = \pi \times \left(21 - \left(\frac{33}{5}\right)\right)\newlineV=π×(1055335)V = \pi \times \left(\frac{105}{5} - \frac{33}{5}\right)\newlineV=π×(725)V = \pi \times \left(\frac{72}{5}\right)Multiply by pi to get the final answer:\newlineV=π×(725)V = \pi \times \left(\frac{72}{5}\right)\newlineV=(725)πV = \left(\frac{72}{5}\right)\pi

More problems from Find derivatives of using multiple formulae