Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Using implicit differentiation, find 
(dy)/(dx).

sqrt(xy)=-2+yx^(3)

Using implicit differentiation, find dydx \frac{d y}{d x} .\newlinexy=2+yx3 \sqrt{x y}=-2+y x^{3}

Full solution

Q. Using implicit differentiation, find dydx \frac{d y}{d x} .\newlinexy=2+yx3 \sqrt{x y}=-2+y x^{3}
  1. Identify Equation: Identify the equation that needs to be differentiated implicitly.\newlineEquation: xy=2+yx3\sqrt{xy} = -2 + yx^{3}
  2. Differentiate Both Sides: Differentiate both sides of the equation with respect to xx, remembering to apply the product rule to xyxy and yx3yx^{3}, and the chain rule to xy\sqrt{xy}.ddx(xy)=ddx(2+yx3)\frac{d}{dx}(\sqrt{xy}) = \frac{d}{dx}(-2 + yx^{3})
  3. Apply Chain Rule: Apply the chain rule to the left side: ddx(u)=12u12dudx\frac{d}{dx}(\sqrt{u}) = \frac{1}{2}u^{-\frac{1}{2}} \cdot \frac{du}{dx}, where u=xyu = xy. ddx(xy)=12(xy)12ddx(xy)\frac{d}{dx}(\sqrt{xy}) = \frac{1}{2}(xy)^{-\frac{1}{2}} \cdot \frac{d}{dx}(xy)
  4. Apply Product Rule: Apply the product rule to ddx(xy)\frac{d}{dx}(xy): ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv', where u=xu = x and v=yv = y.
    ddx(xy)=ddx(x)y+xddx(y)\frac{d}{dx}(xy) = \frac{d}{dx}(x)y + x*\frac{d}{dx}(y)
    ddx(xy)=y+x(dydx)\frac{d}{dx}(xy) = y + x\left(\frac{dy}{dx}\right)
  5. Substitute Result: Substitute the result from the product rule into the chain rule result.\newline(12)(xy)12(y+xdydx)(\frac{1}{2})(xy)^{-\frac{1}{2}} \cdot (y + x\frac{dy}{dx})
  6. Differentiate Right Side: Differentiate the right side of the equation with respect to xx, applying the product rule to yx3yx^{3}.
    ddx(2+yx3)=ddx(2)+ddx(yx3)\frac{d}{dx}(-2 + yx^{3}) = \frac{d}{dx}(-2) + \frac{d}{dx}(yx^{3})
    ddx(2+yx3)=0+ddx(yx3)\frac{d}{dx}(-2 + yx^{3}) = 0 + \frac{d}{dx}(yx^{3})
  7. Apply Product Rule: Apply the product rule to ddx(yx3)\frac{d}{dx}(yx^{3}): ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv', where u=yu = y and v=x3v = x^{3}.
    ddx(yx3)=ddx(y)x3+yddx(x3)\frac{d}{dx}(yx^{3}) = \frac{d}{dx}(y)x^{3} + y*\frac{d}{dx}(x^{3})
    ddx(yx3)=(dydx)x3+y3x2\frac{d}{dx}(yx^{3}) = \left(\frac{dy}{dx}\right)x^{3} + y*3x^{2}
  8. Combine Differentiated Results: Combine the differentiated results and set them equal to each other. \newline(12)(xy)12(y+xdydx)=0+dydxx3+y3x2(\frac{1}{2})(xy)^{-\frac{1}{2}} * (y + x\frac{dy}{dx}) = 0 + \frac{dy}{dx}x^{3} + y\cdot 3x^{2}
  9. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx} by isolating terms involving dydx\frac{dy}{dx} on one side of the equation.\newline(12)(xy)12y+(12)(xy)12x(dydx)=(dydx)x3+y3x2\left(\frac{1}{2}\right)(xy)^{-\frac{1}{2}} \cdot y + \left(\frac{1}{2}\right)(xy)^{-\frac{1}{2}} \cdot x\left(\frac{dy}{dx}\right) = \left(\frac{dy}{dx}\right)x^{3} + y\cdot 3x^{2}
  10. Subtract Terms: Subtract dydxx3\frac{dy}{dx}x^{3} from both sides to get all dydx\frac{dy}{dx} terms on one side.\newline(12)(xy)12xdydxdydxx3=y3x2(12)(xy)12y\left(\frac{1}{2}\right)(xy)^{-\frac{1}{2}} \cdot x\frac{dy}{dx} - \frac{dy}{dx}x^{3} = y\cdot 3x^{2} - \left(\frac{1}{2}\right)(xy)^{-\frac{1}{2}} \cdot y
  11. Factor out dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} on the left side of the equation.dydx×(12(xy)12×xx3)=y×3x212(xy)12×y\frac{dy}{dx} \times \left(\frac{1}{2}(xy)^{-\frac{1}{2}} \times x - x^{3}\right) = y\times3x^{2} - \frac{1}{2}(xy)^{-\frac{1}{2}} \times y
  12. Divide Both Sides: Divide both sides by [(1/2)(xy)1/2xx3][(1/2)(xy)^{-1/2} \cdot x - x^{3}] to solve for dydx\frac{dy}{dx}.dydx=y3x2(1/2)(xy)1/2y(1/2)(xy)1/2xx3\frac{dy}{dx} = \frac{y\cdot 3x^{2} - (1/2)(xy)^{-1/2} \cdot y}{(1/2)(xy)^{-1/2} \cdot x - x^{3}}

More problems from Find derivatives of radical functions