Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Numeric expression with the resulting value\newline(44×32×42)/(4×31×30)(4^{4}\times3^{2}\times4^{-2})/(4\times3^{-1}\times3^{0})

Full solution

Q. Numeric expression with the resulting value\newline(44×32×42)/(4×31×30)(4^{4}\times3^{2}\times4^{-2})/(4\times3^{-1}\times3^{0})
  1. Simplify Numerator and Denominator: First, let's simplify the numerator and the denominator separately by using the properties of exponents.\newlineNumerator: 44×32×424^{4}\times3^{2}\times4^{-2}\newlineDenominator: 4×31×304\times3^{-1}\times3^{0}
  2. Combine Like Terms in Numerator: In the numerator, we can combine the terms with the same base by subtracting the exponents when the bases are multiplied. 44×42=442=424^{4}\times4^{-2} = 4^{4-2} = 4^2 So the numerator becomes 42×324^2\times3^2.
  3. Simplify Denominator: In the denominator, we can simplify the terms with the base 33. \newline31×30=31+0=313^{-1}\times3^{0} = 3^{-1+0} = 3^{-1}\newlineSo the denominator becomes 4×314\times3^{-1}.
  4. Rewrite Expression: Now we rewrite the expression with the simplified numerator and denominator: \newlineegin{equation}\newline\frac{44^22\times33^22}{44\times33^{1-1}}\newline\end{equation}
  5. Divide Terms with Same Base: Next, we can simplify the expression further by dividing the terms with the same base.\newline424\frac{4^2}{4} ×\times 3231\frac{3^2}{3^{-1}}
  6. Simplify Each Part: Simplify each part separately:\newline42/4=4(21)=41=44^2 / 4 = 4^{(2-1)} = 4^1 = 4\newline32/31=3(2(1))=3(2+1)=333^2 / 3^{-1} = 3^{(2-(-1))} = 3^{(2+1)} = 3^3
  7. Multiply Simplified Terms: Now multiply the simplified terms: 4×334 \times 3^3
  8. Calculate 333^3: Calculate the value of 333^3: \newline33=3×3×3=273^3 = 3 \times 3 \times 3 = 27
  9. Final Answer: Finally, multiply 44 by 2727 to get the final answer:\newline4×27=1084 \times 27 = 108

More problems from Find derivatives of using multiple formulae