Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,5),(1,6),(2,9)}. Which equation represents 
f(x) ?

f(x)=x^(2)+5

f(x)=x+5

f(x)=5*((6)/(5))^(x)

f(x)=3x+3

Three points on the graph of the function f(x) f(x) are {(0,5),(1,6),(2,9)} \{(0,5),(1,6),(2,9)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+5 f(x)=x^{2}+5 \newlinef(x)=x+5 f(x)=x+5 \newlinef(x)=5(65)x f(x)=5 \cdot\left(\frac{6}{5}\right)^{x} \newlinef(x)=3x+3 f(x)=3 x+3

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,5),(1,6),(2,9)} \{(0,5),(1,6),(2,9)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+5 f(x)=x^{2}+5 \newlinef(x)=x+5 f(x)=x+5 \newlinef(x)=5(65)x f(x)=5 \cdot\left(\frac{6}{5}\right)^{x} \newlinef(x)=3x+3 f(x)=3 x+3
  1. Substitution Testing: To determine which equation represents the function f(x)f(x), we will substitute each given point into each of the proposed equations and check for consistency.
  2. Point (00,55): First, let's test the point (0,5)(0,5) in each equation.\newlineFor f(x)=x2+5f(x) = x^2 + 5, when x=0x = 0, f(0)=02+5=5f(0) = 0^2 + 5 = 5.\newlineFor f(x)=x+5f(x) = x + 5, when x=0x = 0, f(0)=0+5=5f(0) = 0 + 5 = 5.\newlineFor f(x)=5×(6/5)xf(x) = 5 \times (6/5)^x, when x=0x = 0, f(0)=5×(6/5)0=5×1=5f(0) = 5 \times (6/5)^0 = 5 \times 1 = 5.\newlineFor f(x)=x2+5f(x) = x^2 + 500, when x=0x = 0, f(x)=x2+5f(x) = x^2 + 522.\newlineThe first three equations are consistent with the point (0,5)(0,5), but the last one is not.
  3. Point (1,6)(1,6): Next, let's test the point (1,6)(1,6) in the remaining equations.\newlineFor f(x)=x2+5f(x) = x^2 + 5, when x=1x = 1, f(1)=12+5=6f(1) = 1^2 + 5 = 6.\newlineFor f(x)=x+5f(x) = x + 5, when x=1x = 1, f(1)=1+5=6f(1) = 1 + 5 = 6.\newlineFor f(x)=5×(6/5)xf(x) = 5 \times (6/5)^x, when x=1x = 1, (1,6)(1,6)00.\newlineAll three equations are consistent with the point (1,6)(1,6).
  4. Point (2,9)(2,9): Finally, let's test the point (2,9)(2,9) in the remaining equations.\newlineFor f(x)=x2+5f(x) = x^2 + 5, when x=2x = 2, f(2)=22+5=4+5=9f(2) = 2^2 + 5 = 4 + 5 = 9.\newlineFor f(x)=x+5f(x) = x + 5, when x=2x = 2, f(2)=2+5=7f(2) = 2 + 5 = 7.\newlineFor f(x)=5×(6/5)xf(x) = 5 \times (6/5)^x, when x=2x = 2, (2,9)(2,9)00.\newlineOnly the first equation, f(x)=x2+5f(x) = x^2 + 5, is consistent with the point (2,9)(2,9).
  5. Final Equation Determination: Since only the equation f(x)=x2+5f(x) = x^2 + 5 is consistent with all three given points, this is the equation that represents the function f(x)f(x).

More problems from Find derivatives of using multiple formulae