Q. Three points on the graph of the function f(x) are {(0,2),(1,4),(2,6)}. Which equation represents f(x) ?f(x)=2⋅2xf(x)=2x+2f(x)=21x−1f(x)=x2+2
Test Function 0,2: Let's test each given function with the points provided to see which one fits all three points.First, we will test the point 0,2 with each function.
Test Function (1, 4): Testing the first function f(x)=2⋅2x with the point (0,2):f(0)=2⋅20=2⋅1=2. This matches the y-value of the point (0,2).
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2):f(0)=2⋅0+2=0+2=2.This also matches the y-value of the point (0,2).
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2):f(0)=2⋅0+2=0+2=2.This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2):f(0)=21⋅0−1=0−1=−1.This does not match the y-value of the point (0,2). We can eliminate this function.
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2): f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2): f(0)=21⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2): (0,2)0. This matches the y-value of the point (0,2).
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2): f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=(21)x−1 with the point (0,2): f(0)=(21)⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2): (0,2)0. This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point (0,2)2.
Test Function (2,6): Testing the second function f(x)=2x+2 with the point (0,2):f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2):f(0)=21⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2):f(x)=2x+21. This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point f(x)=2x+23.Testing the first function f(x)=2x+24 with the point f(x)=2x+23:f(x)=2x+26. This matches the y-value of the point f(x)=2x+23.
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2):f(0)=2⋅0+2=0+2=2.This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2):f(0)=21⋅0−1=0−1=−1.This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2):f(0)=02+2=0+2=2.This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point (1,4).Testing the first function (0,2)0 with the point (1,4):f(1)=2⋅21=2⋅2=4.This matches the y-value of the point (1,4).Testing the second function f(x)=2x+2 with the point (1,4):f(1)=2⋅1+2=2+2=4.This also matches the y-value of the point (1,4).
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2): f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2): f(0)=21⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2): (0,2)0. This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point (0,2)2.Testing the first function (0,2)3 with the point (0,2)2: (0,2)5. This matches the y-value of the point (0,2)2.Testing the second function f(x)=2x+2 with the point (0,2)2: (0,2)9. This also matches the y-value of the point (0,2)2.Testing the fourth function f(x)=x2+2 with the point (0,2)2: f(0)=2⋅0+2=0+2=23. This does not match the y-value of the point (0,2)2. We can eliminate this function.
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2): f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2): f(0)=21⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2): (0,2)0. This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point (0,2)2.Testing the first function (0,2)3 with the point (0,2)2: (0,2)5. This matches the y-value of the point (0,2)2.Testing the second function f(x)=2x+2 with the point (0,2)2: (0,2)9. This also matches the y-value of the point (0,2)2.Testing the fourth function f(x)=x2+2 with the point (0,2)2: f(0)=2⋅0+2=0+2=23. This does not match the y-value of the point (0,2)2. We can eliminate this function.Finally, let's test the remaining functions with the third point f(0)=2⋅0+2=0+2=25.
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2): f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2): f(0)=21⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2): (0,2)0. This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point (0,2)2.Testing the first function (0,2)3 with the point (0,2)2: (0,2)5. This matches the y-value of the point (0,2)2.Testing the second function f(x)=2x+2 with the point (0,2)2: (0,2)9. This also matches the y-value of the point (0,2)2.Testing the fourth function f(x)=x2+2 with the point (0,2)2: f(0)=2⋅0+2=0+2=23. This does not match the y-value of the point (0,2)2. We can eliminate this function.Finally, let's test the remaining functions with the third point f(0)=2⋅0+2=0+2=25.Testing the first function (0,2)3 with the point f(0)=2⋅0+2=0+2=25: f(0)=2⋅0+2=0+2=28. This does not match the y-value of the point f(0)=2⋅0+2=0+2=25. We can eliminate this function.
Test Function (2, 6): Testing the second function f(x)=2x+2 with the point (0,2): f(0)=2⋅0+2=0+2=2. This also matches the y-value of the point (0,2).Testing the third function f(x)=21x−1 with the point (0,2): f(0)=21⋅0−1=0−1=−1. This does not match the y-value of the point (0,2). We can eliminate this function.Testing the fourth function f(x)=x2+2 with the point (0,2): (0,2)0. This matches the y-value of the point (0,2).Now, let's test the remaining functions with the second point (0,2)2.Testing the first function (0,2)3 with the point (0,2)2: (0,2)5. This matches the y-value of the point (0,2)2.Testing the second function f(x)=2x+2 with the point (0,2)2: (0,2)9. This also matches the y-value of the point (0,2)2.Testing the fourth function f(x)=x2+2 with the point (0,2)2: f(0)=2⋅0+2=0+2=23. This does not match the y-value of the point (0,2)2. We can eliminate this function.Finally, let's test the remaining functions with the third point f(0)=2⋅0+2=0+2=25.Testing the first function (0,2)3 with the point f(0)=2⋅0+2=0+2=25: f(0)=2⋅0+2=0+2=28. This does not match the y-value of the point f(0)=2⋅0+2=0+2=25. We can eliminate this function.Testing the second function f(x)=2x+2 with the point f(0)=2⋅0+2=0+2=25: (0,2)2. This matches the y-value of the point f(0)=2⋅0+2=0+2=25. Since this is the only function that fits all three points, it must be the correct representation of (0,2)4.
More problems from Find derivatives of sine and cosine functions