Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,2),(1,4),(2,8)}. Which equation represents 
f(x) ?

f(x)=x^(2)+2

f(x)=2(2)^(x)

f(x)=2x+2

f(x)=4x

Three points on the graph of the function f(x) f(x) are {(0,2),(1,4),(2,8)} \{(0,2),(1,4),(2,8)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+2 f(x)=x^{2}+2 \newlinef(x)=2(2)x f(x)=2(2)^{x} \newlinef(x)=2x+2 f(x)=2 x+2 \newlinef(x)=4x f(x)=4 x

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,2),(1,4),(2,8)} \{(0,2),(1,4),(2,8)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+2 f(x)=x^{2}+2 \newlinef(x)=2(2)x f(x)=2(2)^{x} \newlinef(x)=2x+2 f(x)=2 x+2 \newlinef(x)=4x f(x)=4 x
  1. Test Function with Point (0,2)(0, 2): Let's test each given function with the points provided to see which one fits all three points.\newlineFirst, we will test the point (0,2)(0, 2) with the function f(x)=x2+2f(x) = x^2 + 2.\newlinef(0)=02+2=2f(0) = 0^2 + 2 = 2.\newlineThis matches the given point (0,2)(0, 2).
  2. Test Function with Point 1,41, 4: Now, let's test the point 1,41, 4 with the function f(x)=x2+2f(x) = x^2 + 2.f(1)=12+2=1+2=3.f(1) = 1^2 + 2 = 1 + 2 = 3.This does not match the given point 1,41, 4, so f(x)=x2+2f(x) = x^2 + 2 cannot be the correct function.

More problems from Find derivatives of sine and cosine functions