Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,2),(1,3),(2,4)}. Which equation represents 
f(x) ?

f(x)=x^(2)+2

f(x)=x-2

f(x)=2*((3)/(2))^(x)

f(x)=x+2

Three points on the graph of the function f(x) f(x) are {(0,2),(1,3),(2,4)} \{(0,2),(1,3),(2,4)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+2 f(x)=x^{2}+2 \newlinef(x)=x2 f(x)=x-2 \newlinef(x)=2(32)x f(x)=2 \cdot\left(\frac{3}{2}\right)^{x} \newlinef(x)=x+2 f(x)=x+2

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,2),(1,3),(2,4)} \{(0,2),(1,3),(2,4)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+2 f(x)=x^{2}+2 \newlinef(x)=x2 f(x)=x-2 \newlinef(x)=2(32)x f(x)=2 \cdot\left(\frac{3}{2}\right)^{x} \newlinef(x)=x+2 f(x)=x+2
  1. Test Equation f(x)f(x): Test the first equation f(x)=x2+2f(x) = x^2 + 2 with the given points.\newlineFor (0,2)(0,2), f(0)=02+2=2f(0) = 0^2 + 2 = 2.\newlineFor (1,3)(1,3), f(1)=12+2=3f(1) = 1^2 + 2 = 3.\newlineFor (2,4)(2,4), f(2)=22+2=6f(2) = 2^2 + 2 = 6.\newlineCheck if the calculated values match the given points.
  2. Check Calculated Values: Since f(2)=6f(2) = 6 does not match the given point (2,4)(2,4), the first equation f(x)=x2+2f(x) = x^2 + 2 is not the correct representation of f(x)f(x).
  3. Test Equation f(x)f(x): Test the second equation f(x)=x2f(x) = x - 2 with the given points.\newlineFor (0,2)(0,2), f(0)=02=2f(0) = 0 - 2 = -2.\newlineFor (1,3)(1,3), f(1)=12=1f(1) = 1 - 2 = -1.\newlineFor (2,4)(2,4), f(2)=22=0f(2) = 2 - 2 = 0.\newlineCheck if the calculated values match the given points.
  4. Check Calculated Values: Since f(0)=2f(0) = -2 does not match the given point (0,2)(0,2), the second equation f(x)=x2f(x) = x - 2 is not the correct representation of f(x)f(x).
  5. Test Equation f(x)f(x): Test the third equation f(x)=2×(32)xf(x) = 2 \times \left(\frac{3}{2}\right)^x with the given points.\newlineFor (0,2)(0,2), f(0)=2×(32)0=2×1=2f(0) = 2 \times \left(\frac{3}{2}\right)^0 = 2 \times 1 = 2.\newlineFor (1,3)(1,3), f(1)=2×(32)1=2×32=3f(1) = 2 \times \left(\frac{3}{2}\right)^1 = 2 \times \frac{3}{2} = 3.\newlineFor (2,4)(2,4), f(2)=2×(32)2=2×94=92f(2) = 2 \times \left(\frac{3}{2}\right)^2 = 2 \times \frac{9}{4} = \frac{9}{2}.\newlineCheck if the calculated values match the given points.

More problems from Find derivatives of sine and cosine functions