Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,1),(1,2),(2,5)}. Which equation represents 
f(x) ?

f(x)=x^(2)+1

f(x)=2^(x)

f(x)=x+1

f(x)=3x-1

Three points on the graph of the function f(x) f(x) are {(0,1),(1,2),(2,5)} \{(0,1),(1,2),(2,5)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+1 f(x)=x^{2}+1 \newlinef(x)=2x f(x)=2^{x} \newlinef(x)=x+1 f(x)=x+1 \newlinef(x)=3x1 f(x)=3 x-1

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,1),(1,2),(2,5)} \{(0,1),(1,2),(2,5)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+1 f(x)=x^{2}+1 \newlinef(x)=2x f(x)=2^{x} \newlinef(x)=x+1 f(x)=x+1 \newlinef(x)=3x1 f(x)=3 x-1
  1. Test Equation 11: Test the first equation f(x)=x2+1f(x) = x^2 + 1 with the given points.\newlineFor (0,1)(0,1): f(0)=02+1=1f(0) = 0^2 + 1 = 1.\newlineFor (1,2)(1,2): f(1)=12+1=2f(1) = 1^2 + 1 = 2.\newlineFor (2,5)(2,5): f(2)=22+1=5f(2) = 2^2 + 1 = 5.\newlineAll three points satisfy the equation f(x)=x2+1f(x) = x^2 + 1.
  2. Test Equation 22: Test the second equation f(x)=2xf(x) = 2^x with the given points.\newlineFor (0,1)(0,1): f(0)=20=1f(0) = 2^0 = 1.\newlineFor (1,2)(1,2): f(1)=21=2f(1) = 2^1 = 2.\newlineFor (2,5)(2,5): f(2)=22=4f(2) = 2^2 = 4, which does not match the given point (2,5)(2,5).\newlineThis equation does not represent the function f(x)f(x) based on the given points.
  3. Test Equation 33: Test the third equation f(x)=x+1f(x) = x + 1 with the given points.\newlineFor (0,1)(0,1): f(0)=0+1=1f(0) = 0 + 1 = 1.\newlineFor (1,2)(1,2): f(1)=1+1=2f(1) = 1 + 1 = 2.\newlineFor (2,5)(2,5): f(2)=2+1=3f(2) = 2 + 1 = 3, which does not match the given point (2,5)(2,5).\newlineThis equation does not represent the function f(x)f(x) based on the given points.
  4. Test Equation 44: Test the fourth equation f(x)=3x1f(x) = 3x - 1 with the given points.\newlineFor (0,1)(0,1): f(0)=3×01=1f(0) = 3\times 0 - 1 = -1, which does not match the given point (0,1)(0,1).\newlineThis equation does not represent the function f(x)f(x) based on the given points.

More problems from Find derivatives of sine and cosine functions