Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,1),(1,2),(2,5)}. Which equation represents 
f(x) ?

f(x)=x^(2)+1

f(x)=2^(x)

f(x)=3x-1

f(x)=x+1

Three points on the graph of the function f(x) f(x) are {(0,1),(1,2),(2,5)} \{(0,1),(1,2),(2,5)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+1 f(x)=x^{2}+1 \newlinef(x)=2x f(x)=2^{x} \newlinef(x)=3x1 f(x)=3 x-1 \newlinef(x)=x+1 f(x)=x+1

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,1),(1,2),(2,5)} \{(0,1),(1,2),(2,5)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+1 f(x)=x^{2}+1 \newlinef(x)=2x f(x)=2^{x} \newlinef(x)=3x1 f(x)=3 x-1 \newlinef(x)=x+1 f(x)=x+1
  1. Test Equation with Points: Test the first equation f(x)=x2+1f(x) = x^2 + 1 with the given points.\newlineFor (0,1)(0,1): f(0)=02+1=1f(0) = 0^2 + 1 = 1. This matches the given point.\newlineFor (1,2)(1,2): f(1)=12+1=2f(1) = 1^2 + 1 = 2. This matches the given point.\newlineFor (2,5)(2,5): f(2)=22+1=5f(2) = 2^2 + 1 = 5. This matches the given point.\newlineAll three points match the equation f(x)=x2+1f(x) = x^2 + 1.
  2. Verify Matching Points: Since all points match the first equation, there is no need to test the other equations. We have found the correct equation that represents f(x)f(x).

More problems from Find derivatives of sine and cosine functions