Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,1),(1,2),(2,4)}. Which equation represents 
f(x) ?

f(x)=(x+1)^(2)

f(x)=2x

f(x)=2^(x)

f(x)=x+1

Three points on the graph of the function f(x) f(x) are {(0,1),(1,2),(2,4)} \{(0,1),(1,2),(2,4)\} . Which equation represents f(x) f(x) ?\newlinef(x)=(x+1)2 f(x)=(x+1)^{2} \newlinef(x)=2x f(x)=2 x \newlinef(x)=2x f(x)=2^{x} \newlinef(x)=x+1 f(x)=x+1

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,1),(1,2),(2,4)} \{(0,1),(1,2),(2,4)\} . Which equation represents f(x) f(x) ?\newlinef(x)=(x+1)2 f(x)=(x+1)^{2} \newlinef(x)=2x f(x)=2 x \newlinef(x)=2x f(x)=2^{x} \newlinef(x)=x+1 f(x)=x+1
  1. Test Equation f(x)f(x): Test the first equation f(x)=(x+1)2f(x) = (x+1)^{2} with the given points.\newlineWe will plug in the xx-values from the points into the equation and see if the resulting yy-values match the given points.\newlineFor the point (0,1)(0,1):\newlinef(0)=(0+1)2=12=1f(0) = (0+1)^{2} = 1^{2} = 1\newlineThis matches the yy-value of the first point.\newlineFor the point (1,2)(1,2):\newlinef(1)=(1+1)2=22=4f(1) = (1+1)^{2} = 2^{2} = 4\newlineThis does not match the yy-value of the second point, which is f(x)=(x+1)2f(x) = (x+1)^{2}00.\newlineSince the second point does not match, we can conclude that f(x)=(x+1)2f(x) = (x+1)^{2} is not the correct equation.

More problems from Find derivatives of sine and cosine functions