Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
720ft^(3). Alex measures the sides to be 
9.66ft by 
9.11ft by 
7.59ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 720ft3 720 \mathrm{ft}^{3} . Alex measures the sides to be 9.66ft 9.66 \mathrm{ft} by 9.11ft 9.11 \mathrm{ft} by 7.59ft 7.59 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 720ft3 720 \mathrm{ft}^{3} . Alex measures the sides to be 9.66ft 9.66 \mathrm{ft} by 9.11ft 9.11 \mathrm{ft} by 7.59ft 7.59 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the measured sides.\newlineVolume = Length×Width×Height\text{Length} \times \text{Width} \times \text{Height}\newlineVolume = 9.66ft×9.11ft×7.59ft9.66\,\text{ft} \times 9.11\,\text{ft} \times 7.59\,\text{ft}
  2. Perform Multiplication: Perform the multiplication to find the calculated volume.\newlineCalculated Volume = 9.66×9.11×7.599.66 \times 9.11 \times 7.59\newlineCalculated Volume 667.40334 ft3\approx 667.40334 \text{ ft}^3
  3. Find Absolute Error: Find the absolute error by subtracting the given volume from the calculated volume.\newlineAbsolute Error = Given VolumeCalculated Volume|\text{Given Volume} - \text{Calculated Volume}|\newlineAbsolute Error = 720 ft3667.40334 ft3|720 \text{ ft}^3 - 667.40334 \text{ ft}^3|\newlineAbsolute Error \approx 5252.5966659666 \text{ ft}^33
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the given volume.\newlineRelative Error = Absolute ErrorGiven Volume\frac{\text{Absolute Error}}{\text{Given Volume}}\newlineRelative Error 52.59666ft3720ft3\approx \frac{52.59666 \, \text{ft}^3}{720 \, \text{ft}^3}
  5. Perform Division: Perform the division to find the relative error. Relative Error 0.07305\approx 0.07305
  6. Round Relative Error: Round the relative error to the nearest thousandth.\newlineRelative Error 0.073\approx 0.073

More problems from Circles: word problems