Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
63ft^(3). Eric measures the sides to be 
6.59ft by 
3.44ft by 
3.15ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 63ft3 63 \mathrm{ft}^{3} . Eric measures the sides to be 6.59ft 6.59 \mathrm{ft} by 3.44ft 3.44 \mathrm{ft} by 3.15ft 3.15 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 63ft3 63 \mathrm{ft}^{3} . Eric measures the sides to be 6.59ft 6.59 \mathrm{ft} by 3.44ft 3.44 \mathrm{ft} by 3.15ft 3.15 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Estimated Volume: Calculate the estimated volume using the measurements provided by Eric.\newlineThe formula for the volume of a rectangular prism is length×width×heightlength \times width \times height.\newlineEstimated volume = 6.59ft×3.44ft×3.15ft6.59\,\text{ft} \times 3.44\,\text{ft} \times 3.15\,\text{ft}
  2. Perform Multiplication: Perform the multiplication to find the estimated volume.\newlineEstimated volume = 6.59×3.44×3.156.59 \times 3.44 \times 3.15\newlineEstimated volume 71.54844 ft3\approx 71.54844 \text{ ft}^3 (rounded to five decimal places for intermediate calculation)
  3. Calculate Absolute Error: Calculate the absolute error by subtracting the actual volume from the estimated volume.\newlineAbsolute error = Estimated volumeActual volume|\text{Estimated volume} - \text{Actual volume}|\newlineAbsolute error = 71.5484463|71.54844 - 63|\newlineAbsolute error \approx 88.5484454844 \text{ ft}³ (rounded to five decimal places for intermediate calculation)
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual volume and then converting it to a percentage.\newlineRelative error = (Absolute error/Actual volume)×100%(\text{Absolute error} / \text{Actual volume}) \times 100\%\newlineRelative error (8.54844/63)×100%\approx (8.54844 / 63) \times 100\%
  5. Round Relative Error: Perform the division and multiplication to find the relative error as a percentage.\newlineRelative error (0.1356857143)×100%\approx (0.1356857143) \times 100\%\newlineRelative error 13.56857143%\approx 13.56857143\%
  6. Round Relative Error: Perform the division and multiplication to find the relative error as a percentage.\newlineRelative error (0.1356857143)×100%\approx (0.1356857143) \times 100\%\newlineRelative error 13.56857143%\approx 13.56857143\%Round the relative error to the nearest thousandth.\newlineRelative error 13.569%\approx 13.569\% (rounded to three decimal places)

More problems from Circles: word problems