Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
441cm^(3). Alex measures the sides to be 
6.6cm by 
6.93cm by 
8.51cm. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 441 cm3 441 \mathrm{~cm}^{3} . Alex measures the sides to be 6.6 cm 6.6 \mathrm{~cm} by 6.93 cm 6.93 \mathrm{~cm} by 8.51 cm 8.51 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 441 cm3 441 \mathrm{~cm}^{3} . Alex measures the sides to be 6.6 cm 6.6 \mathrm{~cm} by 6.93 cm 6.93 \mathrm{~cm} by 8.51 cm 8.51 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the given measurements.\newlineVolume = Length×Width×Height\text{Length} \times \text{Width} \times \text{Height}\newlineVolume = 6.6cm×6.93cm×8.51cm6.6\,\text{cm} \times 6.93\,\text{cm} \times 8.51\,\text{cm}\newlineVolume = 390.67338cm3390.67338\,\text{cm}^3
  2. Find Absolute Error: Find the absolute error by subtracting the calculated volume from the actual volume.\newlineAbsolute error = Actual volumeCalculated volume|\text{Actual volume} - \text{Calculated volume}|\newlineAbsolute error = 441 cm3390.67338 cm3|441 \text{ cm}^3 - 390.67338 \text{ cm}^3|\newlineAbsolute error = 50.32662 cm350.32662 \text{ cm}^3
  3. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual volume and then multiplying by 100100 to get the percentage.\newlineRelative error = (Absolute error/Actual volume)×100(\text{Absolute error} / \text{Actual volume}) \times 100\newlineRelative error = (50.32662cm3/441cm3)×100(50.32662 \, \text{cm}^3 / 441 \, \text{cm}^3) \times 100\newlineRelative error = 1111.4141\%

More problems from Circles: word problems