Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
336cm^(3). Eric measures the sides to be 
6.34cm by 
8.03cm by 
7.46cm. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 336 cm3 336 \mathrm{~cm}^{3} . Eric measures the sides to be 6.34 cm 6.34 \mathrm{~cm} by 8.03 cm 8.03 \mathrm{~cm} by 7.46 cm 7.46 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 336 cm3 336 \mathrm{~cm}^{3} . Eric measures the sides to be 6.34 cm 6.34 \mathrm{~cm} by 8.03 cm 8.03 \mathrm{~cm} by 7.46 cm 7.46 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the given measurements.\newlineVolume = length×width×height\text{length} \times \text{width} \times \text{height}\newlineVolume = 6.34cm×8.03cm×7.46cm6.34 \, \text{cm} \times 8.03 \, \text{cm} \times 7.46 \, \text{cm}\newlineVolume = 379.2402cm3379.2402 \, \text{cm}^3
  2. Find Absolute Error: Compare the calculated volume to the given volume to find the absolute error.\newlineAbsolute error = Calculated volumeGiven volume\lvert\text{Calculated volume} - \text{Given volume}\rvert\newlineAbsolute error = 379.2402cm3336cm3\lvert379.2402\,\text{cm}^3 - 336\,\text{cm}^3\rvert\newlineAbsolute error = 43.2402cm343.2402\,\text{cm}^3
  3. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the given volume and then converting it to a percentage.\newlineRelative error = (Absolute error/Given volume)×100%(\text{Absolute error} / \text{Given volume}) \times 100\%\newlineRelative error = (43.2402cm3/336cm3)×100%(43.2402 \, \text{cm}^3 / 336 \, \text{cm}^3) \times 100\%\newlineRelative error = 0.1286905×100%0.1286905 \times 100\%\newlineRelative error = 12.86905%12.86905\%
  4. Round Relative Error: Round the relative error to the nearest thousandth.\newlineRelative error (rounded) = 12.869%12.869\%

More problems from Circles: word problems