Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
270in^(3). Alex measures the sides to be 5.71 in by 5.46 in by 9.4 in. In calculating the volume, what is the relative error, to the nearest hundredth.
Answer:

The volume of a rectangular prism is 270in3 270 \mathrm{in}^{3} . Alex measures the sides to be 55.7171 in by 55.4646 in by 99.44 in. In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 270in3 270 \mathrm{in}^{3} . Alex measures the sides to be 55.7171 in by 55.4646 in by 99.44 in. In calculating the volume, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the given measurements.\newlineVolume = Length ×\times Width ×\times Height\newlineVolume = 5.715.71 in ×\times 5.465.46 in ×\times 9.49.4 in\newlineVolume = 293.0204293.0204 in3^3
  2. Find Absolute Error: Compare the calculated volume with the given volume to find the absolute error.\newlineAbsolute error = Calculated VolumeGiven Volume|\text{Calculated Volume} - \text{Given Volume}|\newlineAbsolute error = 293.0204 in3270 in3|293.0204 \text{ in}^3 - 270 \text{ in}^3|\newlineAbsolute error = 23.0204 in323.0204 \text{ in}^3
  3. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the given volume and then converting it to a percentage.\newlineRelative error = (Absolute error/Given Volume)×100%(\text{Absolute error} / \text{Given Volume}) \times 100\%\newlineRelative error = (23.0204 in3/270 in3)×100%(23.0204 \text{ in}^3 / 270 \text{ in}^3) \times 100\%\newlineRelative error = 0.08526×100%0.08526 \times 100\%\newlineRelative error = 88.526526\%
  4. Round Relative Error: Round the relative error to the nearest hundredth.\newlineRelative error (rounded) = 8.53%8.53\%

More problems from Circles: word problems