Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
140ft^(3). Eric measures the sides to be 
7.12ft by 
3.83ft by 
5.49ft. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 140ft3 140 \mathrm{ft}^{3} . Eric measures the sides to be 7.12ft 7.12 \mathrm{ft} by 3.83ft 3.83 \mathrm{ft} by 5.49ft 5.49 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 140ft3 140 \mathrm{ft}^{3} . Eric measures the sides to be 7.12ft 7.12 \mathrm{ft} by 3.83ft 3.83 \mathrm{ft} by 5.49ft 5.49 \mathrm{ft} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the given measurements.\newlineVolume = Length ×\times Width ×\times Height\newlineVolume = 7.127.12ft ×\times 3.833.83ft ×\times 5.495.49ft
  2. Perform Multiplication: Perform the multiplication to find the calculated volume.\newlineCalculated Volume = 7.12×3.83×5.497.12 \times 3.83 \times 5.49\newlineCalculated Volume 141.688ft3\approx 141.688 \, \text{ft}^3
  3. Compare Volumes: Compare the calculated volume with the given volume to find the absolute error.\newlineAbsolute Error = Calculated VolumeGiven Volume|\text{Calculated Volume} - \text{Given Volume}|\newlineAbsolute Error = 141.688 ft3140 ft3|141.688 \text{ ft}^3 - 140 \text{ ft}^3|\newlineAbsolute Error \approx 11.688688 \text{ ft}^33
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the given volume.\newlineRelative Error = Absolute ErrorGiven Volume\frac{\text{Absolute Error}}{\text{Given Volume}}\newlineRelative Error 1.688ft3140ft3\approx \frac{1.688 \, \text{ft}^3}{140 \, \text{ft}^3}
  5. Perform Division: Perform the division to find the relative error. Relative Error 0.0120571429\approx 0.0120571429
  6. Round Relative Error: Round the relative error to the nearest thousandth.\newlineRelative Error 0.012\approx 0.012

More problems from Circles: word problems