Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
108cm^(3). Eric measures the sides to be 
3.32cm by 
4.04cm by 
8.72cm. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 108 cm3 108 \mathrm{~cm}^{3} . Eric measures the sides to be 3.32 cm 3.32 \mathrm{~cm} by 4.04 cm 4.04 \mathrm{~cm} by 8.72 cm 8.72 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 108 cm3 108 \mathrm{~cm}^{3} . Eric measures the sides to be 3.32 cm 3.32 \mathrm{~cm} by 4.04 cm 4.04 \mathrm{~cm} by 8.72 cm 8.72 \mathrm{~cm} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume of the rectangular prism using the measurements provided by Eric.\newlineVolume = length ×\times width ×\times height\newlineVolume = 3.32cm3.32\, \text{cm} ×\times 4.04cm4.04\, \text{cm} ×\times 8.72cm8.72\, \text{cm}
  2. Perform Multiplication: Perform the multiplication to find the calculated volume.\newlineCalculated Volume = 3.32×4.04×8.723.32 \times 4.04 \times 8.72\newlineCalculated Volume = 116.905728cm3116.905728 \, \text{cm}^3
  3. Compare Volumes: Compare the calculated volume with the actual volume to find the absolute error.\newlineAbsolute Error = Actual VolumeCalculated Volume|\text{Actual Volume} - \text{Calculated Volume}|\newlineAbsolute Error = 108 cm3116.905728 cm3|108 \text{ cm}^3 - 116.905728 \text{ cm}^3|\newlineAbsolute Error = 8.905728 cm3| -8.905728 \text{ cm}^3 |\newlineAbsolute Error = 88.905728905728 \text{ cm}^33
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual volume and then converting it to a percentage.\newlineRelative Error = (Absolute Error/Actual Volume)×100%(\text{Absolute Error} / \text{Actual Volume}) \times 100\%\newlineRelative Error = (8.905728cm3/108cm3)×100%(8.905728 \, \text{cm}^3 / 108 \, \text{cm}^3) \times 100\%
  5. Perform Division and Multiplication: Perform the division and multiplication to find the relative error as a percentage.\newlineRelative Error = (8.905728/108)×100%(8.905728 / 108) \times 100\%\newlineRelative Error = 0.082462%0.082462\% (rounded to the nearest thousandth)

More problems from Circles: word problems