Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Solve.
Find the exact volume and surface area of a sphere of radius 12 inches.

V=576 pi cu in.; SA=2304 pi sq in.

V=2304 pi cu in.; SA=576 pi sq in.

V=1728 pi cu in ;SA=144 pi sq in.

V=6912 pi cuin.: SA^(˙)=36 pi sq in.

Solve.\newlineFind the exact volume and surface area of a sphere of radius 1212 inches.\newlineV=576π cu in.;V=576\pi\text{ cu in.}; SA=2304π sq in.SA=2304\pi\text{ sq in.}\newlineV=2304π cu in.;V=2304\pi\text{ cu in.}; SA=576π sq in.SA=576\pi\text{ sq in.}\newlineV=1728π cu inV=1728\pi\text{ cu in} ;SA=144π sq in.;SA=144\pi\text{ sq in.}\newlineV=6912π cuin.:V=6912\pi\text{ cuin.}:SA=36π sq in.SA^{\cdot}=36\pi\text{ sq in.}\newline

Full solution

Q. Solve.\newlineFind the exact volume and surface area of a sphere of radius 1212 inches.\newlineV=576π cu in.;V=576\pi\text{ cu in.}; SA=2304π sq in.SA=2304\pi\text{ sq in.}\newlineV=2304π cu in.;V=2304\pi\text{ cu in.}; SA=576π sq in.SA=576\pi\text{ sq in.}\newlineV=1728π cu inV=1728\pi\text{ cu in} ;SA=144π sq in.;SA=144\pi\text{ sq in.}\newlineV=6912π cuin.:V=6912\pi\text{ cuin.}:SA=36π sq in.SA^{\cdot}=36\pi\text{ sq in.}\newline
  1. Calculate Volume: To find the volume VV of a sphere, we use the formula V=43πr3V = \frac{4}{3}\pi r^3, where rr is the radius of the sphere. In this case, the radius rr is given as 1212 inches.\newlineLet's calculate the volume:\newlineV=43π(12 inches)3V = \frac{4}{3}\pi(12 \text{ inches})^3\newlineV=43π(1728 cubic inches)V = \frac{4}{3}\pi(1728 \text{ cubic inches})\newlineV=2304π cubic inchesV = 2304\pi \text{ cubic inches}
  2. Calculate Surface Area: Now, to find the surface area (SA) of a sphere, we use the formula SA=4πr2SA = 4\pi r^2. Again, the radius rr is 1212 inches.\newlineLet's calculate the surface area:\newlineSA=4π(12 inches)2SA = 4\pi(12 \text{ inches})^2\newlineSA=4π(144 square inches)SA = 4\pi(144 \text{ square inches})\newlineSA=576π square inchesSA = 576\pi \text{ square inches}
  3. Check Options: We have calculated both the volume and the surface area of the sphere. Let's check the options to see which one matches our calculations: \newlineV=576π cu in.;SA=2304π sq in.V=576 \pi \text{ cu in.}; SA=2304 \pi \text{ sq in.} - This option is incorrect.\newlineV=2304π cu in.;SA=576π sq in.V=2304 \pi \text{ cu in.}; SA=576 \pi \text{ sq in.} - This option matches our calculations.\newlineV=1728π cu in.;SA=144π sq in.V=1728 \pi \text{ cu in.}; SA=144 \pi \text{ sq in.} - This option is incorrect.\newlineV=6912π cu in.;SA=36π sq in.V=6912 \pi \text{ cu in.}; SA=36 \pi \text{ sq in.} - This option is incorrect.

More problems from Area of quadrilaterals and triangles: word problems