Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The solution set for 
2x^(2)-7x-4=0 is:
(1) 
{2,-1}
(3) 
{-2,1}
(2) 
{-(1)/(2),4}
(4) 
{(1)/(2),-4}

The solution set for 2x27x4=0 2 x^{2}-7 x-4=0 is:\newline(11) {2,1} \{2,-1\} \newline(33) {2,1} \{-2,1\} \newline(22) {12,4} \left\{-\frac{1}{2}, 4\right\} \newline(44) {12,4} \left\{\frac{1}{2},-4\right\}

Full solution

Q. The solution set for 2x27x4=0 2 x^{2}-7 x-4=0 is:\newline(11) {2,1} \{2,-1\} \newline(33) {2,1} \{-2,1\} \newline(22) {12,4} \left\{-\frac{1}{2}, 4\right\} \newline(44) {12,4} \left\{\frac{1}{2},-4\right\}
  1. Identify Equation Type: Step 11: Identify the type of equation and its standard form.\newlineThe equation 2x27x4=02x^2 - 7x - 4 = 0 is a quadratic equation in the standard form ax2+bx+c=0ax^2 + bx + c = 0, where a=2a = 2, b=7b = -7, and c=4c = -4.
  2. Use Quadratic Formula: Step 22: Use the quadratic formula to find the roots.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Plugging in the values:\newlinex=(7)±(7)242(4)22x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4\cdot2\cdot(-4)}}{2\cdot2}\newlinex=7±49+324x = \frac{7 \pm \sqrt{49 + 32}}{4}\newlinex=7±814x = \frac{7 \pm \sqrt{81}}{4}
  3. Simplify Square Root: Step 33: Simplify the square root and solve for xx.x=7±94x = \frac{{7 \pm 9}}{{4}}x=7+94x = \frac{{7 + 9}}{{4}} or 794\frac{{7 - 9}}{{4}}x=164x = \frac{{16}}{{4}} or 24\frac{{-2}}{{4}}x=4x = 4 or 0.5-0.5

More problems from Find derivatives of using multiple formulae